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New second- and third-order algorithms are presented for calculating translating and 
rotating steady-state solutions of the 2D incompressible Euler equations (which we call V- 
states). These are piecewise constant regions of vorticity and the contours bounding them are 
obtained by solving iteratively a nonlinear integro-differential equation. New limiting contours 
with corners are obtained and compared with local analytical solutions. The precise results 
correct mistakes for limiting contours that were previously given. 

1. INTRODUCTION 

Solutions of the two-dimensional incompressible Euler equations will elucidate 
properties of very large Reynold’s number flows, as may occur in planetary 
atmospheres and oceans. The method of contour dynamics, introduced by Zabusky et 
al. [ 11, provides a computationally convenient approach because a two-dimensional 
problem is reduced to one dimension. That is, in contour dynamics the sources of the 
flow are piecewise-constant regions of vorticity, which we call FAVRs (finite area 
vortex regions) or, equivalently, the contours bounding these regions. 

The parameters that describe the range of existence and stability of steady-state 
FAVR configurations may elucidate properties of these flows. Kirchoff 12 1 found that 
an elliptical FAVR was a steady-state solution and Love 131 investigated its stability. 
No other closed form solutions have been found. Deem and Zabusky [4 1 found new 
steady-state FAVR configurations by solving numerically a nonlinear integro- 
differential equation for the contours using a Newton-Raphson procedure. For 
example, they found several isolated rotating states of m-fold symmetry that are bifur- 
cations from harmonic waves on a circular FAVR and one isolated symmetrically 
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shaped dipolar (i.e., oppositely signed vorticity) translating state. Examples are 
sketched in Fig. 1. They considered these regions of piecewise-constant vorticity as 
members of larger sets of steady-state solutions and referred to them genericly as “V- 
states.” Saffman and colleagues also applied this technique to calculate shapes of 
doubly connected rotating V-states 151 and periodic states modeling free shear layers 
[ 61 and wakes [ 71. Pierrehumbert 18 1 applied an efficient first-order relaxation 
method and obtained twelve members of the set of symmetrically shaped dipolar tran- 
slating states. Pierrehumbert and Widnall 191 also applied this algorithm to calculate 
free shear layer models. Burbea and Landau 1101 applied the same algorithm and 
obtained further examples of m-fold symmetric rotating V-states for 3 < m < 6. In 
both 18 ] and IlO] the limiting V-states, where the contour is nonanalytic, are 
defective. This occurs because their algorithms seem unable to handle singular and 
near-singular contours and because the spatial resolution is inadequate in regions of 
large curvature. In the latter paper, this results in errors in the numerical calculation 
of the parameter range of existence of rotating V-states. The analytical calculation by 
Burbea Ill ] of this range is also incorrect and both calculations are discussed in 
Section 6. 

In this paper we present a new, fast, accurate and computationally efficient 
algorithm which requires about the same number of iterations to converge as those 
described above and is capable of treating the limiting V-states. Our numerical results 
are compared with a local analysis in the neighborhood of nonanalyticity. For the 
translating V-state, there are two possible limiting cases: the two regions may touch 
at one point or they may have a common boundary. Analytically, we have been able 
to exclude the former case. For the latter case we have established analytically that 
the two (one-sided) tangent angles at a nonanalytical point may differ only by 7r/2 
(i.e., a corner). Numerically, we have confirmed the existence of this solution as 
shown in Fig. 4b. For the rotating V-states we have established analytically that the 
tangent angles at a nonanalytical point may diSfer only by 0 (i.e., the tangent angle is 
continuous) or 7r/2. Numerically, we have confirmed the existence of the n/2 corner 
for 3 < m < 6 as shown in Fig. 7. 

In a recent letter, Saffman and Tanveer I12 ] also did a local analysis of the 
limiting translating case and obtained a 7c/2 corner. They also used numerical 
methods to calculate this state, but only provide a gross figure and insufficient infor- 
mation to allow a detailed comparison of results. 

In Section 2 we present analytical preliminaries and derive two nonlinear integro- 
differential equations for the boundary which are the basis for our new second- and 
third-order accurate algorithms. In Section 3 we analyze the limiting cases in regions 
where a contour may become nonanalytical and prove the claims made above. In 
Section 4 we present the discretized versions of the integro-differential equations and 
iterative algorithms for obtaining both translating and rotating V-states. In Sections 5 
and 6 we discuss properties of the numerical solutions for translating and rotating V- 
states, respectively. In both cases, magnified views of the contours are given in the 
region of nonanalytical behavior and they are compared to the local solutions of 
Section 3. We also present a thorough discussion of the st?nsitivity of the results in the 
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neighborhood of nonanalytical points to algorithms, discretization procedures, error 
criteria, and boundary conditions. 

2. THE INTEGRO-DIFFERENTIAL EQUATIONS FOR V-STATES 

The Euler equations can be written in vorticity-stream function form as 

u,+uux+uwy=o, (2.la) 

where 

Aty = --LO, (2. lb) 

and 

04 0) = (w, 3 -w,). (2.lc) 

If the vorticity is represented by a set of N, piecewise constant functions of strength 
wj in regions Dj with boundaries i?Dj, we can express the stream function as 

(2.2) 

where G is the Green’s function for the Laplacian in the unbounded domain 

G(x - (, y - v) = -(2n)-’ log[(x - 0’ t (y - v)*]“* = -(27t-’ log 1. (2.3) 

If Green’s theorem is applied to the result of substituting (2.2) into (2.1~) we obtain 
an expression for the velocity as a sum over the N, contour integrals, namely, 

.V‘ 
(u, u) = (u(x, y), u(x, y)) = (27r-’ x l~l,~.i,, log W drl), (2.4) 

j= I I 

where [wlj is the jump in vorticity (outside-inside) at dD, and where the dependence 
on time has been suppressed. If we integrate by parts we obtain 

(24, u) = (27r) - ’ ? ,~, /ulj!a~,l-‘(X-5,Y--‘l)d’ 
I 

(2.5) 

The contours are assumed to be piecewise Liapunov, where a Liapunov curve is one 
which possesses a unique continuous tangent angle, a, but not necessarily a 
curvature, at each point [ 13, 14). Thus, we require that each contour consists of a 
finite number of segments, each of which possess a unique a at every point but may 
have an infinite curvature at the ends. 
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Kelvin’s theorem requires that a particle on the boundary remains on the 
boundary. Hence, for steady-state solutions 

n.v particle = n ’ ‘boundary3 (2.6) 

where Vparticle = (u, u)aa and n is the outward normal to the contour. For translating 
V-states (2.6) can be written as 

u sin a - (v - V) cos a = 0, (4 Y) E 8D, and aD,, (2.7T) 

where V is the translational speed (the velocity is in the y-direction from Fig. la). For 
rotating V-states (2.6) can be written as 

dR 
u sin u - u cos a = -flR x, (x, y) E c?D. (2.7R) 

where Q is the angular velocity of the state, s is the arclength, and R(s) is the radius 
from the origin to the contour as shown in Fig. lb. Note that for simplicity in (2.7) 
and henceforth we label equations with “T” (translating) or “R” (rotating) according 
to the state being considered. We now assume that the contours are “star-shaped,” 
where the single-valued R(8) is defined with respect to a convenient origin as shown 
in Fig. 1, so that 

where 

(x, y) = (R(B) cos 0 +x0, R(0) sin 0), 

(2.8 1 

R(0) = [(x(e) -x0)* + y’(8))“’ 

(x0 = 0 for the rotating case). Hence, (2.7) becomes 

udy/d8 - (v - V)dx/d0 = 0, (x,y)EdD,orQ, (2.9T) 

or 

udy/dtY - vdx/de + RR dR/dB = 0, (x, y) E i?D. (2.9R) 

(a) (b) 

FIG. 1. Schematic and notation for V-states (the lines of symmetry are dotted). (a) Translating. 
Dipolar vorticity, o, = -wI. (b) Rotating. The FAVR shown has 3qold symmetry. 
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Also, we can use (2.8) to write (2.9) explicitly in terms of R(8) as 

dR/dO = AR, (2.10) 

where 

A= [(V-v)sin&ucosBI/((V-c)cosB+usin8) (2.llT) 

A=-[ucos 19+ v sinBl/(u sine- vcosO+f2R]. (2.llR) 

As discussed in Section 4 we will use (2.9) for our second-order scheme and (2.10) 
for our third-order scheme. 

An alternative “stream function” form of the integral equations is obtained by 
writing (2.9) as 

(a, w>(&ld@ + (v + 3, y/)(dx/dO) = 0, (x, y)EaD, or %D,, (2.12T) 

or 

(a, yl)(dy/dQ) + (a, y/)(dx/dB) + L’R dR/dB = 0, r = R(O), (r, 13) E BD, (2.12R) 

and integrating to obtain 

V(x, .Y) + vx=cj, (x, y) E aD,j, j = 1 or 2, (2.13T) 

or 

v(r, 0) + (Q/2) R “(0) = c, r = R(O), (r, 0) E 3D. (2.13R) 

Pierrehumbert [S] used (2.13T) and Burbea and Landau [ 101 used (2.13R) to obtain 
steady-state solutions, whereas we use the “velocity” form as described above. 

In this paper we solve two classes of problems: 

Problem T (symmetric dipolar translating V-state): This state is symmetric about 
both axes as shown in Fig. la with vorticity o, = + 1 and o2 = -1. Then, given 
xg = 1 and 0 < xA < 1 find R(8) and V that satisfy (2.9T) or (2.10) with (2.llT). 

Problem R (m-fold symmetric rotating V-state): This state with vorticity $1 has 
m identical sectors each of which has two reflectionally symmetric subsectors as 
shown in Fig. lb for m = 3. Then, given m, RBs R(n/m - fn) = 1 and R,4 = 
R(+r/2) > 1 find R(0) and a that satisfy (2.9R) or (2.10) with (2.llR). 
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3. ANALYSIS FOR LIMITING V-STATES 

3.1. Introduction 

In this section we summarize the local analysis of V-states, presented in detail 
elsewhere [ 151. We use a local expansion to obtain the equation for the boundary of 
a symmetric dipolar translating or m-fold symmetric rotating V-state in the 
neighborhood of a possible singularity. The analysis provides a necessary condition 
for the behavior of the boundary. Namely, the dzj@rence in tangent angles at a 
singular point can be only 7r/2 (i.e., a corner) or, for the rotating case, 0 (i.e., the 
tangent angle is continuous but some higher derivative may be discontinuous). In 
Sections 3.2 and 3.3 we present this summary for the translating and rotating cases, 
respectively. In addition, in Section 3.4 the analysis is applied to Kirchoff’s elliptical 
vortex to validate the procedure. In Sections 5 and 6, respectively, we compare this 
local expansion to the numerical results and obtain excellent agreement. 

The general method of analysis is as follows. For convenience we use polar coor- 
dinates, (r, 8), with the singularity at the origin. As shown in Fig. 2 we assume that 
the V-state can be oriented so that it is symmetric about the y-axis and lies in the 
upper half plane (i.e., the vorticity on the negative y-axis is 0). We do all calculations 
in the right half-plane, i.e., -7c/2 < 19 < n/2, using symmetry to complete the V-state. 
We assume in some neighborhood of the origin, 0 < r < 6. that the boundary, 
0 = B(r), is once continuously differentiable so that the tangent angle is continuous. 
(However, this does not preclude lim,,, dS(r)/dr = f co.) We expand the integral 
expression for I,V in (2.2) in terms of r to O(r* log r). Since the V-state is stationary in 
the appropriate reference frame, the value of the stream function, I$, is constant on 
its boundary and so, without loss of generality, @(r, 19(r)) = 0 for 0 < r < 6. We write 
e(r) as 

W-1 = 4 + O,(r), (3.1) 

where 8, is the tangent angle of the (right half of the) V-state at the origin, i.e., 
lim,, B(r) = 19,) and so 

Q f-T,(r) = 0. (3.2) 

Since I$, the solution of Poisson’s equation, (2. lb), is once continuously differen- 
tiable in all of R*, we can expand it in a Taylor series with remainder, or 

0 = wV, WI) = w’(r, 4 t B,(r)) = v/V-, 0,) + d,$(r, a) B,(r), (3.3) 

/’ I 

>, 

iD* Dl 
I,,,” 2 w 1 

0(r)=Bo+6,(r) 

x ./ 0 x 
6 

FIG. 2. Schematic and notation for a representative FAVR used in the analysis in Section 3. (Only 
in this section is the origin of the coordinate system at the singularity.) 

581/53/l 4 
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where u s a(r) is in the open interval between 8, and B0 + 0,(r). Thus 

e,(r) = -v% &J/a, ws(r, u(r)>. (3.4) 

We obtain the possible value of 19, from (3.2), i.e., 

pz w’(r, &J/a, v/V, u(r)) = 0. (3.5) 

In those cases where @(r, 0,) f 0, which includes the corner cases, we then expand 
I$ up to O(r’) and solve for e,(r) from (3.4). (To lowest order in r we can replace 
4r> by w  

3.2. Translating V-States 

The limiting symmetric translating V-state consists of two FAVRs with a common 
boundary on the y-axis and with vorticity w, = + 1 and w1 = -1. The right FAVR is 
composed of two contour segments, namely, e(r) as described above and 0 = n/2, 
which is the common boundary. At the end of this subsection we will show that the 
two FAVRs of a limiting-case V-state cannot touch at only one point. (However, we 
cannot rule out the possibility of an isolated V-state whose FAVRs have one point in 
common.) 

For0<6&1 andr<&wefindthat [15] 

ty”(r, 0) = 
L 

V + X- ’ jjDI cos 4 dp d$j r cos 0 

- (4~))I( 1 + cos 20,) r* log r sin 28 + o(r* log r), (3.6) 

where V is the speed of the V-state. Note that ty’(r, /3) = O(r) if the leading term of 
(3.6) is nonzero. Thus, from (3.5) cot 8, = 0 so B0 = h-71/2. If the leading term 
vanishes, i.e., 

(3.7) 

then (3.5) yields tan 28, = 0 so 8, = 0 or k7c/2. We first discuss B0 = 0. 
For B0 = 0, from [ 151 

$(r. e) = - (2~)~ ‘r* log r sin 28 + (2n)-‘(Cl + C,)r* sin 28 

- (4n)-‘r* [ 28 cos 28 - sin 20 + 1 5’,,, 
if 71/2 > e> 0 / 

2e 
, if 0>0>-7t/2( I 

where 

+ o(r2W->>, (3.8) 

c’ = jJ&,,, p - ’ sin 24 dp d# + (l/2)( 1 + 2 log S), (3.9a) 

c, = -,(p- sin* e,@)dp, (3.9b) 
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and D,(S) is that subset of D, whose distance from the origin is >6. From (3.4) we 
find that 

O,(r) = (n/4)/(--log r + C, + CJ + o((log r)-‘). (3.10) 

Substituting (3.10) into (3.9b) we obtain a quadratic equation for C, and find that 

c, = i[log 6 - c, + ((log 6 - q* - (n’/4))“‘] + o((log a)-*). (3.11) 

The singular behavior of the curve near the origin, where 19,(r) @ 1, can be seen 
from the slope, 

dv sin e(r) + r cos W> W-> = e,(r) + 
dx= cos 19(r) - r sin e(r) 19’(r) 

o(ef(r)) 
> (3.12a) 

and the curvature, 

lC= 
2eyr) + r*(eyr))3 + rey-) 

(I + r*(eyr))*p* 

= (8/7r) e:p>/r + o(e:(ryr). (3.12b) 

Note that the tangent angle is O(l/log v) and the curvature is O(r-‘(log r)-*) so that 
lim,, K = co. Also, the velocity at any point (r, 0) is 

u=--x-‘rlogrcose+n-‘(C,+c,)rcose 

- (271)-‘r [ -28 sin e + I-: 1:: : zc 2: ‘:,2 ( ] + o(r* 8,(r)), (3.13a) 
> / 

u=-n-‘rlogrsine+np’(C,+C2)rsine 

- (27r-‘r[28cos et- 71~0s ej + o(r*fTl,(r)), (3.13b) 

so that on the curve u = O(r log r) and v = O(r). 
For 0, = +7r/2, we show in [ 15 ] that 

f(r, 8) = C,r cos 8 + (2x)-‘C, r* sin 28 + o(r* cos S), (3.14) 

where 

c,= v+ 71-I il cos $ dp d$ (3.15a) 
DI 

and 

c, = li p-‘sin24dpdqh 
DI 

(3.15b) 
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Substituting 9 = 19,, + 0,(r) in (3.14) we obtain 

0 = v/‘(r, B. + B,(r)) = - C,r sin 8,(r) - (27~)’ C, r2 sin 28,(r) 

+ o(r* sin 19,(r)). (3.16) 

If we divide (3.16) by r sin e,(r) and let r + 0, we find that C, = 0. If we then divide 
(3.16) by r2 sin 0,(r) and let r -+ 0 we find that C, = 0. However, C, = 0 in (3.15b) if 
and only if the origin of the coordinate system is on the horizontal line through the 
centroid of D,. That is, the two FAVRs touch at only one point. This follows because 
the integrand in (3.15b) is antisymmetric about 6 = 0 and the V-state is assumed to 
be symmetric about this horizontal line of symmetry of D,. If we do the same 
analysis for 8, = -n/2 we obtain the same result. 

We now show that this configuration leads to a contradiction. If the analysis is 
repeated with the origin on this line of symmetry [ 15 1, then we again obtain (3.14) 
and so, again, C, = 0, which contradicts the value obtained from (3.15a). To see this 
we use the numerical solutions obtained in Section 5 (or in [S]). We estimate the 
integral in (3.15a) by taking the limit as x4 + 0 of a circle of radius (1 -x4)/2 
centered at ((1 + x,)/2,0). From Fig. 4 this circle, which we denote by C(x.,), lies 
inside the corresponding V-state, denoted by D,(x,#). Thus, 

cos4dpd#=(@!)(l -x,)‘/(l +x,)3 (3.17) 

and so 

. . 
71 

-, 

u 
cos $ dp d+4 > +. (3.18) 

* I>, 

From Table I, 0 > I’> -0.258 for all the V-states and so C, > 0.2. (Actually 
C 0 z 0.6 for x, = lo-‘.) Thus, solutions with FAVRs touching at one point are 
excluded so the only possible solution is the corner solution shown in Fig. 3a. 

(a) (b) 

FE. 3. Schematic showing the local behavior of the limiting V-state near the singularity at the 
origin. The possible values of 8, are described in Section 3. (a) Translating. The vertical line is the line 
of intersection of the two FAVRs. (b) Rotating. 
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TABLE I 

Properties of the Translating V-States 

51 

Case x1 

1 0.90 
2 0.80 
3 0.70 
4 0.60 
5 0.50 
6 0.40 
7 0.30 
8 0.20 
9 0.10 

10 0.05 
II 0.01 
12 lE-3 
13 IE-4 
14 IE-5 
15 5E-6 
16 lE-6 
17 lE-7 

Limiting 0 

A P ,T V VI V” 

0.00786 0.3 14 0.950 -6.646-4 1.000 0.0500 0.0527 
0.0316 0.631 0.900 -2.79E-3 1.000 0.100 0.111 
0.0718 0.950 0.850 -6.72E-3 1.000 0.151 0.178 
0.130 1.278 0.800 -0.0129 0.999 0.203 0.254 
0.208 1.620 0.749 -0.022 1 0.998 0.258 0.344 
0.314 1.998 0.698 -0.0355 0.995 0.316 0.452 
0.459 2.416 0.645 -0.0557 0.985 0.382 0.592 
0.685 2.986 0.588 -0.0885 0.955 0.467 0.794 
1.138 4.024 0.518 -0.149 0.852 0.602 1.162 
1.597 5.071 0.474 -0.197 0.735 0.713 1.506 
2.230 6.642 0.430 -0.245 0.593 0.843 1.959 
2.444 7.324 0.417 -0.257 0.550 0.882 2.1 16 
2.468 7.452 0.415 PO.258 0.545 0.886 2.135 
2.470 7.474 0.415 -0.258 0.544 0.887 2.137 
2.410 7.476 0.415 PO.258 0.544 0.887 2.137 
2.470 7.478 0.415 -0.258 0.544 0.887 2.137 
2.470 7.479 0.415 PO.258 0.544 0.887 2.137 

2.470 7.480 0.415 -0.258 0.544 0.887 2.137 1.669 3.338 

H a 
- 

0.0501 1.001 
0.101 1.006 
0.152 1.016 
0.207 1.033 
0.265 1.061 
0.332 1.107 
0.416 1.188 
0.539 1.348 
0.786 1.747 
1.048 2.206 
1.451 2.932 
1.629 3.262 
1.662 3.325 
1.668 3.335 
1.668 3.336 
1.668 3.337 
1.669 3.337 

Y 

-1.669 

I (b) 
FIG. 4. (a) A sector of the translating V-states for cases 1 through 13 given in Table 1. (b) A 

magnified view of the V-sates in the region of high curvature for cases 14 through 17 and the limiting 
case (the lowest curve). The dots are the nodes used in the numerical calculation. 
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3.3. Rotating V-States 

For the rotating V-state we let o, = o2 = fl in Fig. 2 and find in [ 151 

v/Yr, 8) = K’ ji,, 
[ 

sin Q dp d$ - f2jj 
I 

r sin B 

+ (4~)) l sin 28, r2 log r cos 28 + o(r2 log r), (3.19) 

where Q is the angular speed of the V-state about the centroid at (0, ~7). There are 
three cases to consider. First, if the leading term in (3.19) is nonzero then from (3.5) 
tan 0, = 0 so 8, = 0. Second, if the leading term vanishes, i.e., 

(3.20) 

then (3.5) yields cot 28, = 0 so fIO = k171/4. We will investigate only B,, = +7c/4, since 
the numerical results in Section 6 indicate that 8, = -n/4 is not a limiting case. 
Third, if the leading term in (3.19) vanishes and 8, = 7c/2 then (3.19) reduces to 
@)(r, t9) = o(r2 log r) and (3.5) is not applicable (J. Burbea, private communication). 
However, we will show that we obtain a contradiction if we expand @)(r, 0) to the 
next order in r for 0, = +rc/2. (Again, we do not consider 8, = --7t/2 since the 
numerical results in Section 6 indicate that it is not a solution.) The two possible 
solutions 8, = 0 and 7~14 are shown in Fig. 3b. 

For case 1 where et, = 0 we find, from [ 151, that 

yP(r, e) = C,r sin e + (27~)‘(C, + C2)r2 cos 28 

1-(1/2)~~~28, 7q2>e>o 

- W4)r2 [ -2R + 1 (l/2) cos 28, 0 > e 2 +q2 
+ O(r3), (3.21) 

where 

C,=C’ 
!5 

sin 4 dp d# - Qj, (3.22a) 
DI 

c, = 
il 

pP’cos2#dpd#, (3.22b) 
D,(S) 

and 

C2=-(1/2){:p-’ sin28,Q)dp. (3.22~) 

From (3.4) we obtain 

0,(r) = -(2CJ’(C, + C, + 7rQ - (7r/4))r + O(r’). (3.23) 
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Substituting this into (3.22~) we obtain 

c, = (2C,)-‘(C, + nf2 - ?r/4)6 + O(P), (3.24) 

SO 

B,(r) = -(2C,)-‘(C, + d! - 7r/4)(1 + (2CJ’d)r + O(rS*). (3.25) 

From Section 6 we find that for an analytical V-state C, > 0 and C, -+ 0 as the 
limiting V-state is approached so that K * +co. At the limiting V-state the equation 
of the curve jumps to (3.30). 

We will now show that if we let D, be the right half of the ellipse (x/a)’ + 
(y/b)* = 1 we obt ain the correct local solution. That is, if the equation for an ellipse 
in our coordinate system, 

2 sin 19 r=- 
b 

(3.26) 

is expanded near the origin, the result, r z 2a*B/b, agrees with (3.25). First we 
substitute (3.26) into (3.22a) and (3.22b) and obtain 

and 

a-b 1 
--- 
a+b 2 I 

+ 0(6*). 

(3.27a) 

For the ellipse 0 = ab/(a + b)’ [2] an I we substitute for R, C, and C, in (3.25), d ‘f 
we obtain d,(r) = (fb/a*)r + O(rS*), which agrees with the expansion of (3.26) for 
e =% 1. (Note that if a = b then, for arbitrary ~2, B,(r) = fr/a + O(d*) as it should 
since the circular FAVR is a V-state for any Q.) 

For case 2 where t9,, = 7r/4, from [ 15 1 

$(r., 8) = (4x)-‘r* log r cos 28 + (2x)-‘(C, + C,)r* cos 28 

- (4n)-‘r* [ - 27rR + (l/2) cos 28 + (e - n/2) sin 28 

+ *, 
I 

if 7t/2 2 e > n/4 
71 sin 28, if 7t/4 > B > --7~12 il 

+ o(r* 0, W), (3.28) 

where 

c, = p-‘cos2ddpd$-(l/4)(1 +2log6), (3.29a) 
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c, =!Jf p-1 sin’ 0,(p) dp. (3.29b) 

Thus, from (3.4) 

B,(r) = [a - (3/8)/x/(log r + 2(C, + C,)) + o((log r)-2). (3.30) 

Substituting (3.30) into (3.29) we obtain a quadratic equation for C, and find that 

C, = - (1/4)[1og 6 + 2C, + ((log 6 + 2C,)’ - 87r2[f2 - (3/8)] 2)1’2 1 

+ o((log 6)-2). (3.3 1) 

In this case the slope is 

dy/dx = 1 + 20,(r) + 0(0:(r)), (3.32) 

while the curvature is 

u = -([.n - (3/8)1x)-‘0:(r)/r + O(#(r)/r), (3.33) 

which is similar to the translating case, Eqs. (3.12). The velocity is also similar to 
that previously given. 

For case 3 where 8, = n/2, from ( 15 1 

t$(r, 0) = -(2n))‘(C, + C,)r2 cos 28 - (l/2) J2r2 + o(r’), 

where 

and 

c,= ^. 
i? 

p-‘cos2#dpd# 
D,(S) 

C,=(l/z)Jo^p-‘sin28,@)dp. 

Substituting 0 = 8, + O,(r) into (3.34) we obtain 

0 = $(r, 8, + O,(r)) = (2n)-‘(C, + C2)r2 cos 20,(r) - (l/2) flr2 + o(r’), 

Dividing (3.36) by r2 and letting r--t 0 we find that 

Q = cc, + C2)/7c, 

which we will now show is a contradiction since fl > 0 but C,, C, < 0. 

(3.34) 

(3.35a) 

(3.35b) 

(3.36) 

(3.37) 
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For a cusp 0,(r) < 0 and thus C, ( 0 from (3.35b). The proof that C, < 0 relies on 
the fact that the integrand in (3.35a) is positive for 0 < Q < 71/4 and negative for 
n/4 < 4 ,< 7c/2. For the proof, which is contained in ] 151, we find a domain Q such 
that 

c, < jJvP -‘cos24dpdq’1=0. (3.38) 

We choose as our domain, 6k, the square with vertices at (0.0) (Y; 0), (jr, J), and 
(0, J). The positive part of the integral in (3.38), i.e., 0 < 4 < 7r/4, is larger than the 
corresponding part of (3.35a). The negative part of the integral in (3.38) i.e., 7r/4 < 
4 ,< 7r/2, is smaller in magnitude than that in (3.35a) since we are not including the 
subset of D, for which y > J. Geometrically, it can be easily seen that C, < 0 for 
m = 3 and 4 from the limiting cases shown as the solid lines in Fig. 7 since the 
domain is entirely contained in n/4 < 4 < 7~12. 

3.5. Summary 

In this se:tion we have examined the behavior of a V-state in the neighborhood of 
a singularity. To apply the analysis we put the origin of the coordinate system at the 
point in question and then require that the V-state can be oriented to be symmetric 
about the y-axis as in Fig. 2. This can be done for both the symmetric dipolar tran- 
slating V-state and the m-fold symmetric rotating V-state as shown in Figs. 4b and 7. 
(The analysis can also be done without assuming symmetry.) In the translating case 
we find that the difference in tangent angles at a singularity can be only ~12. We 
examine this corner case further and find that for r < 1 the curvature, K, is 
O(rP’(log r)-‘), which indicates the difficulty in numerically calculating the V-state. 
In the rotating case we find that the difference in tangent angles at a singularity can 
be 0 or 7c/2. Again, for the corner case K = O(r- ‘(log r)-2). From numerical results 0 
corresponds to an analytical V-state and 7c/2 to the limiting state for 3 < m < 6 (and 
we assume for all m > 3). (m = 2 is a special case which does not have a limiting V- 
state-it approaches a vortex line with zero circulation, i.e., it vanishes.) 

4. NUMERICAL ALGORITHMS 

4.1. Velocities 

We present new second- and third-order accurate algorithms. They both use a 
second-order accurate representation of the velocities on the contours (u, v),,, 
namely, a midpoint discretization of (2.5) 

where (@‘, v{j’) E aDj, NY’ is the number of points on aDj, and the mean positions 
are given by 

fi+1,24 (A +A+,) (4.2) 
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and 

12; = [(Xk - p>* + (yk - ‘Ijjyy. 

4.2. Second-Order Algorithm 

The second-order accurate algorithm is used to obtain translating V-states for 
lo-’ < x, < 0.90 and rotating m-fold symmetric V-states for 

1.05 <R, < R:(m), (4.3) 

where R:(m) is the value at the corner. It converges more rapidly than the third- 
order iterative algorithm to be presented in the next subsection. However, for the 
limiting nonanalytical contours the third-order algorithm gives more accurate results 
as shown in Sections 5 and 6. 

We use the second-order accurate discretization of (2.9), 

‘ki 112 A Yk - c”k+ I,2 - V) Ax, = 0, l,<k<N, (4.4T) 

or 

uk+1/2AYk - vk+~/2dx + @/2)AR: =o, l<k<N, (4.4R) 

where ‘fk = fkt 1 -fk and @k+ 1/2, ‘k+ 1/2) are defined in (4.2). Here, N + 1 is the 
number of points on the segment of the contour for -n/2 < 0 < 0 in the translating 
case and -7c/2 ,< 8< z/m - $t in the rotating case (the solid lines in Fig. 1). We 
define 

(xk - x0) yk) = R(ek)(COS ok? sin ok., (4.5) 

where x0 = 0 for the limiting translating V-state and all rotating V-states and 
x0 = 4(x,,, + xB) for the analytical translating V-states. Substituting (4.5) into (4.4) 
we obtain 

Rk -Fk+,/2Rk+, =o, I<k<N, (4.6a) 

or, alternatively, 

Rk-F,&2Rk-L =o, 2<k<N+ 1, (4.6b) 

where Fk+,,2 is defined as 

F kf I/2 = 
Uk+ l/2 sin ek+l - @k+ 1/2 - v> cos ek+ 1 

uk+ I/2 sin ek - bk+ li2 - v) ‘OS ek ’ 

(4.7T) 

or 

F ki l/2 = 
‘kf l/2 sin ‘k+ I - Vkf l/2 cos ok+, + &@)Rk+, 

Ukf 1/2 sin ek - vk+ L,2 cos ek f @/2)Rk ’ 
(4.7R) 
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To obtain convergent algorithms, we find it necessary to use a three-point scheme 
and a relaxation procedure. First we average (4.6a) and (4.6b) to obtain 

-fF&Rk-, +xk-fFk+,,2Rk+,=0, 2<k<N, (4.8) 

where R, = R, and RN+, = R,. This discrete representation of our nonlinear integro- 
differential equation can be solved for R, if we know F,, ,,>. Thus, if we have just 
completed the nth iteration we know Rp’ and so can find (up:“:,,,, VP’ ,,z) from (4.1). 
We then calculate the new velocity by summing (4.4) to obtain 

P) = : [z&* Ayy - 42 l/2 Axmx/, -x/d (4.9T) 
k=l 

or 

(4.9R) 

Thus, we can calculate Fp’,,* by (4.7) and solve the linear equation (4.8) for 
R,+R, . -(n+ ‘) We obtain R p’ I’ by “relaxing” R y’ and Et’ I) by 

R:“+” ++@+l) + (1 ep*)R’“’ 
k 7 (4.10) 

where p* = 0.6. We discuss the initial guess used in the appropriate section. 

4.3. Third-Order Algorithm 

Chronologically, we first obtained the second-order algorithm given in Section 4.2 
but found that in the limiting cases it could give inadequate results. A third-order 
algorithm is readily obtained by using the differential equation for R, Eq. (2.10) and 
weighting three adjacent R, in the manner described below. First, we discretize (2.11) 
using a midpoint method 

ARkfAek=Ak+I,2Rk+I/2’ (4.11) 

We rearrange and obtain 

or 

Rk-Gk+l/2Rk+l =@ l<k<N, (4.12a) 

R,-G,=‘,,,Rk-,=o, 2<k,<Ni- 1. (4.12b) 

Here Gk + l/2 is defined as 

G kf l/2 = t1 - fnk+ I,2 Aek)/(l + tAk+ ,,2Aekh (4.13a) 

where 
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and J. is defined in (2.11). The third-order property is achieved by weighting R, in the 
following manner: 

LR,=-&G&R,-, +R,-(1 -PJGk+,,&+, =O, 2 < k < N. (4.14) 

The local analysis, carried out in Appendix A, shows that terms 0((d0,)3) cancel 
exactly if 

-P/@9- J3 + (1 - p&lok)3 = 0. (4.15) 

(The algorithm discussed in Section 4.2 could be made third-order by the same type 
of procedure but it was easier to expand G,, ,,?, (4.13) rather than F, + ,;?, (4.7).) 

In the translating case it was found that convergence could not be obtained for the 
limiting V-state, even for the third-order algorithm, when the boundary condition at 
the singularity was a fixed angle as opposed to a fixed point. (This is discussed 
further in Sections 5 and 6.) The solution oscillated over a small range in the 
neighborhood of the singularity. 

Hence, to obtain convergence we use a two-step procedure: a method of 
stabilization [ 161 followed by a method of relaxation. For the method of stabilization 
we replace LR, = 0 in (4.14) by a discretized version of LR, + ,G?Il?k = 0. where 
Kk --t R, as t + co. That is, we solve for the (n + 1)st iteration by 

(4.16) 

where we have introduced the intermediate variable KY+ I’ and ,U = 0.1. We again 
obtain Ry+ ” by “relaxing” R p’ and Rpt ” by (4.10). (Note that (4.10) and (4.16) 
are readily combined into one equation in our program.) If Pk = $ in (4.14) the 
algorithm is second-order accurate but not identical to the algorithm in Section 4.2. 
We have not used this second-order algorithm in this paper. 

4.4. Summary and Convergence Criteria 

The second- and third-order algorithms are summarized as follows: 

(1) Compute (uF~ ,,*, algorithm or RF+ I’ from 
(4.16) and Rp+” from (4.10) for the third-order algorithm. In either case use 
Gaussian elimination to invert the tridiagonal matrix. 

(5) Continue the iteration until the error criterion is satisfied. A run is 
terminated if 

s+ I 
1 IRp+” - Rp’( < E, (4.17) 

k=l 
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where 
E= 5 x lo-’ 

1 

for translating states 

5 x 1o-6 for rotating states. 

When convergence is obtained we find that the original integro-differential equations 
are satisfied to 5 x 10e8, i.e., 

m,“x I u&t I/zAyk - (vk+ 1/z - V)Ax,/ < 5 x lo-’ 

or 

maxluk+I,2A~k--k+,,2 
k 

Ax,+ (R/2)AR;J < 5 x loo-‘. 

This accuracy was verified on the DEC.10 (a 36-bit machine) at the University of 
Pittsburgh by continuing runs in double-precision once the required accuracy was 
obtained in single-precision. 

5. NUMERICAL CALCULATION OF TRANSLATING V-STATES 

5.1. Analytical V-States 

To compute the sequence of states with lo-’ < xA < 0.90, we use the second-order 
algorithm. For case 1 the initial state is a half-circle of radius 0.05 centered at 
(x0, 0) = (0.95,0), with N + 1 equally spaced nodes, i.e., A0 = n/N. For the 
remaining cases in the sequence, the initial state is obtained by expanding linearly the 
previously obtained solution with (x0, 0) = (i(l + x,~), 0). For cases l-14, when the 
error, E, (4.17), < 10e4 we adjust the nodes so that the distance between the adjacent 
nodes is inversely proportional to the curvature, Rk+ ,,,* A@, cc ok;’ I,z. This makes the 
local error the same in each interval [ 171. For cases 15-17, AO, is the same as 
obtained for case 14. With this discretization, we continue iterating until convergence 
is obtained. 

The results obtained with the second-order algorithm and N = 120 are summarized 
in Figs. 4 and 5 and Table I. Figure 4a represents one sector, i.e., a of the V-state. for 1 

v/v, 

x 

FIG. 5. Global properties for one contour of the translating V-state: A, area; P, perimeter; -u, .Y 
coordinate of the centroid; and, V/V,, the normalized speed. The dots are the corresponding values from 

181. 
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cases 1 (x, = 0.90) through 13 (xA = 10e4). To show the power of the algorithm we 
have enlarged the scale by ~400 in Fig. 4b and show cases 14 (x, = 10p5) through 
17 (x, = lo-‘). We observe that the contours are nested and tend to a limiting 
contour, the lowest in Fig. 4b, discussed below. 

In Fig. 5 and Table I we present properties of the sequence of states where A is the 
area of one side, P is the perimeter, 2 is the x coordinate of the center of area, V is 
the translational speed, V/V, is the normalized translational speed, where 
I’,, = A(4zT-’ is the translational velocity of two point vertices with circulation +A 
and separation 2X, R= (A/n) , “* H = max 1 y 1 is the maximum vertical extent of a 
sector, and a = 2H/( 1 - xA) is the aspect ratio. The dots in Fig. 5 are the results of 
Pierrehumbert [8] and the comparison is excellent except for H in the limiting case, 
as discussed below. The convergence criterion that E < 5 x lo-’ is obtained with the 
second-order algorithm in less than 70 iterations. An iteration step with N= 120 
requires 8 seconds of CPU on the DEC-10. Most of this time is consumed calculating 
the velocities at the nodes. A thorough discussion of accuracy and sensitivity is given 
in the following subsection. 

5.2. Limiting V-State (x, = 0) 

As indicated in Fig. 4b the V-states tend to a limiting state. In Section 3 we 
observed that a limiting contour could approach the y-axis only when the tangent 
angle at the axis, aI, is 0. In this subsection we investigate the sensitivity of this 
approach angle with the second- and third-order algorithms. The following 
paragraphs discuss the boundary conditions, initialization and discretization of this 
nonanalytical state. 

We assume that the boundaries of both contours of the limiting V-state lie on the 
y-axis from (0, -y*) to (0, y*). We let the center of our polar coordinate system be 
at (0,O) and compute the velocities (uk, v,J in two parts. First, we do a numerical 
integration, Eq. (4.1), for -7c/2 < 8 < 0 as previously and, second, we do an 
analytical integration of Eq. (2.4) from (0,O) to (0, -y*) as discussed in [ l]. 

Two types of boundary conditions are used at 0 = -n/2. First, to find the corner 
solution we set dy/dx IO= -n,2 = 0 by fitting a quadratic polynomial, symmetric about 
the y-axis, through the second and third points. The resulting matrix can be 
transformed to a tridiagonal form and solved as previously. This limiting case is 
shown in Fig. 4b. We call this the corner boundary condition. Second, we fix the 
point on the y-axis, R(-n/2), which enables us to determine the sensitivity of this 
limiting V-state. 

Because of its singular character, as discussed in Seection 3, the limiting case is 
approached very slowly and the selection of a “good” initial state is important. As 
described in Appendix B the initial state is derived by smoothing the last analytical 
state (i.e., No. 17, x, = lo-‘) with a high density of nodes near the corner as shown 
in Fig. 4b. We find, using the third-order algorithm and the corner boundary 
condition, that y* = 1.66855, 1.66898 and 1.66911 for N= 30, 60 and 120, respec- 
tively. The convergence is very slow as the solution exhibits a damped oscillation 
around y * and requires ~3000 iterations to satisfy the error criterion. The second- 
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order algorithm solutions do not converge but simply oscillate slowly about y* with a 
range of zO.001. 

The calculations of y* are consistent with the fact that the algorithm is actually 
only second-order accurate near the y-axis because (u, v) cannot be expanded in a 
Taylor series at the singularity (see (3.13)). Using second-order Richardson 
extrapolation on N = 60 and 120, we find to five significant figures 

1.6691 < y” ,< 1.6692. (5.1) 

Note that Pierrehumbert’s limiting V-state has a cusp for the singularity and 
y* = 1.705 (=3.41/2). It seems to us that his distribution of nodes in the 
neighborhood of the singularity was inadequate since we could obtain “V-states” with 
a, = -7r/2 and +71/2 when the neighborhood of the singularity was inadequately 
resolved. (In Fig. 4b, dx, zz 1.4 x 10W5.) 

In Fig. 6a we have plotted the limiting V-state in the neighborhood of the 
singularity for N = 60 and 120 (the dots). This is a magnification of 230 over 
Fig. 4b. Note that in Fig. 4b the tangent angle at x = 0 does not seem to be 0 (even 
with a magnification of ~200) but is seen to be much closer to 0 in Fig. 6a (a 
magnification of z6000), which shows the singular nature of the curve. 

Also in Fig. 6a we plot the equation for the curve (the solid line) from Section 3. 

X 

0 0.0001 0.0002 

-1.6690 

Y 

-1.6691 

(a) 

X 

0 0.05 0.1 
-1.63 f . 1 ’ ’ 

(b) 
FIG. 6. A magnified view of the corner for the limiting translating Y-state. (a) The dots are the 

numerical solutions obtained with the third-order algorithm and the corner boundary condition for 
N = 60 and 120. The solid line is the local solution, (3.10), fit to the N= 120 solution. (b) The 
comparison of Fig. 6a is on a larger scale. 
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TABLE II 

The Limiting Translating V-State in the Neighborhood of the Corner (N = 60) 

Algorithm a1 R, R2 R, R4 R, 

2nd 89.3” 1.665000 1.668862 1.668942 1.668963 1.668972 
37.6” 1.669001 1.669015 1.669012 1.669010 1.669006 
-0.8” 1.669015 1.669014 1.669012 1.669009 1.669005 

-13.2” 1.66902 1 1.669014 1.669012 1.669009 1.669005 
-89.7” 1.673000 1.669162 1.669069 I .669040 1.669023 

3rd 89.7” 
42.0” 
-0.5” 

-23.4” 
-89.7” 

1.664974 1.668814 1.668894 1.668915 
I .668956 1.668973 1.668970 1.668967 
1.668973 1.668972 1.668970 1.668967 
1.668980 1.668972 1.668970 1.668967 
1.673000 1.669162 1.669069 1.669040 

1.668924 
1.668963 
1.668963 
1.668963 
1.669023 

Eq. (3. lo), with parameters C, and C, obtained from the solution with N = 120. C, 
has been calculated numerically from (3.9a) and C, from (3.11). For 6 = 0.000014. 
C, + C, = 0.1196, while even for 6 = 0.049, C, + C’? = 0.1106. In Fig. 6b we 
continue this comparison on a larger scale to show the quality of the asymptotic 
formula. Also, the velocity of the V-state as calculated from (3.7) is -0.25797 while 
numerically it is -0.25793. 

To determine the sensitivity of the algorithm we use the second boundary 
condition, i.e., fix R(-n/2), near y *. In Table II we show the results using both the 
second- and third-order algorithms for N = 60 where the x coordinates of the nodes 
correspond to those in Fig. 6a. Note that in all the cases the solution tends very 
rapidly to the corner solution. (We have given 7 significant figures for comparison 
purposes, but trust only the first 5.) For example, the maximum difference in R, is 
1.673000 - 1.668973 = 0.004027 and in R, is 0.000060 (where x5 = 0.00013). In all 
runs using the fixed-point boundary condition, convergence is obtained in ~100 
iterations. 

6. NUMERICAL CALCULATION OF ROTATING W-STATES 

6.1 Analytical V-States 

We compute the sequence of states for 1.05 < R,4 < Rz with the second-order 
algorithm, where R, * is the value obtained for the limiting V-state. Our initial state is, 
for -n/2 < 0 < 0m - f 7t, 

R’0’(8)=R,+(1-RR,)0(2-0), (6.1) 

where s, = rt/m, where 0 = (0 + jn)/g, and AB, is constant. Fig. 7 shows (x, y) and 
curvature plots for one analytical V-state and the limiting V-state for 3 < m < 6. In 
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FIG. 7. Rotating V-states and their curvatures, K(S), for 3 ( m < 6. (The arclength is normalized so 
s = 0 at 0 = - ix and s = 1 at z/m - $r.) The dashed curves are R, = 1.39256 (m = 3). 1.14709 
(m = 4), 1.11587 (m = 5) and 1.09855 (m = 6) in Table III. The solid curves are the limiting V-states. 

the curvature plots the abscissa is the arclength scaled so that it is 0 at R,, and 1 at 
R,. The properties of the analytical V-states are given in Table IIIa. The limiting 
cases (“) are given for comparison and discussed below. 

6.2. Limiting V-State 

For the limiting V-state our initial state is 

R”‘(8) = R,4 + (1 - RA) 0*(3 - 20), (6.2) 

where R, = 1.73, 1.44, 1.32 and 1.24 for m = 3,4, 5 and 6, respectively. The angular 
difference A@, is either constant as in the analytical case or increases nearly linearly 
with k as discussed in Appendix B. For the latter we start with AB, = O.l”, 0.01” or 
0.001”. We again use two types of boundary conditions at 13 = - n/2: the corner 
boundary condition, dy/dx lo = -s,2 = + 1; and the fixed-point boundary condition, i.e., 
R (-42) = R, . This corner boundary condition is obtained by using a linear 
combination of either the first 3 or 4 points, as described in Table IIIb. 

Our results for 3 < m < 6 are contained in Table IIIb for the corner boundary 
condition. Since the total number of points on the V-state is 2mN the time required 

.581/53/l 5 
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TABLE III 

m R A 

a. Properties of Rotating V-States 
~-- .~ 

R A P l/R, 

1.05000 0.33310 3.2967 6.4440 
1.22128 0.32843 3.7967 7.0463 
1.39256 0.31996 4.2382 7.7082 
1.56384 0.30948 4.5909 8.402 1 

“1.73512 0.30122 4.7291 9.0652 

1.05000 0.37460 3.2947 6.4488 
1.14709 0.37153 3.5684 6.8154 
1.24418 0.36620 3.8046 7.2310 
1.34127 0.35938 3.9870 7.681 1 

“1.43836 0.35395 4.0546 8.1380 

1.05000 0.39945 3.2927 6.4555 
1.11598 0.39705 3.4726 6.7259 
1.18174 0.39313 3.6263 7.0389 
1.24761 0.38815 3.7426 1.3859 

“1.31348 0.38425 3.7842 7.7534 

1.05000 0.41596 3.2909 6.464 1 
1.09855 0.41395 3.4193 6.6827 
1.14711 0.41087 3.5284 6.9388 
1.19566 0.4070 1 3.6097 7.227 1 

‘1.24421 0.40407 3.6375 7.5415 

b. Properties of the Limiting Rotating V-States 

0.95238 
0.81881 
0.71810 
0.63945 
0.57633 

0.95238 
0.87177 
0.80374 
0.74556 
0.69524 

0.95238 
0.89616 
0.8462 1 
0.80153 
0.76134 

0.95238 
0.91029 
0.87176 
0.83636 
0.80372 

m N Algorithm BC Discretizationh a,* RZ A l/R: 

3 60 2nd 3 lo (Cl 0.30126 1.7331 4.7213 0.57701 
60 2nd 3 0.1” (L) 0.30123 1.7349 4.7280 0.57640 
60 2nd 3 0.01 (L) 0.30122 1.7349 4.728 1 0.57639 
60 3rd 4 0.01” (L) 0.30121 1.7353 4.7308 0.57626 
60 3rd 4 0.001~ (L) 0.30117 1.7355 4.7337 0.57620 

120 2nd 3 c (L) 0.30124 1.7349 4.7283 0.57640 

4 60 2nd 3 0.75” (C) 0.35392 1.4381 4.054 1 0.69537 

60 2nd 3 0.01” (L) 0.35397 1.4383 4.055 1 0.69528 

5 60 2nd 3 0.6” (C) 0.38419 1.3137 3.7840 0.76123 
60 2nd 3 0.01” (L) 0.38429 1.3133 3.7842 0.76143 

6 60 2nd 3 0.5” (C) 0.40399 1.2446 3.6316 0.80350 
60 2nd 3 0.01” (L) 0.404 11 1.2441 3.6375 0.80382 

a Designates the limiting cases as discussed in Section 6.2. 
* C = Constant, L = “linearly” increasing. 
’ Corresponds to 0.01” with N = 60 and with an additional node midway between these nodes 



STEADY-STATE SOLUTIONS OF EULER EQUATIONS 65 

for each iteration increases as rn2 and so we will only consider the case m = 3 in 
detail. At the end we will comment about the other cases. 

We perform a sensitivity study for m = 3 using various algorithms, boundary 
conditions and discretizations as shown in Table IIIb. With the “linearly” increasing 
discretization (d~9, = O.l”, O.Ol” and O.OOl”) we find 

LIP = 0.30120 i 0.00004, 

Rf = 1.7352 f 0.0003. 
(6.3) 

In the rotating case, unlike the translating case, both the second- and third-order 
algorithms converge to the limiting V-state for the corner boundary condition. The 
second-order algorithm converges in ~500 iterations while the third-order algorithm 
requires ~2000 iterations because the stabilization and relaxation procedures delay 
the convergence. Since the second-order algorithm is also much faster with the lixed- 
point boundary condition, we use only the third-order algorithm when high accuracy 
is required. 

The range of existence of Q, for 2 <m < 6 is shown as the solid vertical lines in 
Fig. 8 and Qz, the lower end of these lines, can be lit with 

G,*=+(m-2) 
m - 1.195 

m* - 2.071m + .2085 1 > (6.4) 

where Ifis - Q,*i < 10e4. In previous analytical work [ 111 the lower end of the 
range of existence was given as (1/2)(m - 2)/(m - l), shows in Fig. 8 as the dots. 
This result is incorrect because Burbea linearized about the circular V-state and inter- 
preted his results as being valid in the nonlinear region. In previous computational 
work [IO] numerical solutions were obtained below our range of existence. For 

FIG. 8. Range of existence of rotating V-states for 2 <m ( 6. The dots are the lower end of the 
range from the incorrect analysis of Burbea ] II]. 
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FIG. 9. Maximum curvature versus R, for m = 3 rotating V-states. The dots correspond to the third- 
order algorithm (used with Af?, = 0.01” for R, < 1.7 and 0.001” for R, > 1.7). The X’S correspond to the 
results in [ 101. 

example, for m = 3 they presented a solution at R = 0.2822 which had regions of 
negative curvature. These incorrect results are probably due to inadequate 
discretization procedures and to the fact that spurious “solutions” can be obtained for 
R, > Rz, as we will discuss below. 

Since the range of existence of J2, was missed previously [lo], we present the 
results of several sensitivity studies for m = 3 and R, near Rf. First, the dots in 
Fig. 9 show the maximum curvature as a function of R, obtained with the third-order 
algorithm, N = 60 and a discretization of 0.01” for R, < 1.70 and 0.001” for 
R, > 1.70. The x’s are due to Burbea and Landau [ 101 and we have not plotted their 
last value of K = 236 at R, = 1.923, which is well to the right of the figure. 

Second, we used the fixed-point boundary condition, both algorithms and various 
discretizations to obtain the results in Fig. lOa, where we have plotted the tangent 
angle at the singularity, i.e., a, vs R, . The solid line shows the small range obtained 
for R,, 1.735 5 R, 2 1.736, using the third-order algorithm and 0.01” (0.001” is not 
shown since it is undistinguishable from 0.01’). Also note that all solutions cross 
a,=45” at R,z 1.735. In Fig. lob we show the behavior of the contours near A,: 
using the third-order algorithm and O.OOl’, where R, = 1.73333, 1.73493 and 
1.73559. 

As shown in Fig. lOa, we can also obtain “solutions” for R, > R-t and, indeed, for 
CL~ z 90’. This is due to the fact that the various discretized forms of Euler’s 
equations have different solutions than the continuous equations, Eqs. (4.1). For 
larger values of R, we still can obtain convergence, but we find that the solutions 
behave in a strange, algorithm-dependent, noncontinuous fashion. For example, for 
the third-order algorithm with N = 60 and 0.001” the solution jumps back from 
a,z90° to a , % 0’ as R, is increased slightly (to ~1.7358). For the remaining cases, 
R(8,) decreases as R, increases until for R, = 1.80 we find that R(0,) tz 1 (=RH) for 
2 < k < N + 1 so that the solution looks like a circle with a sharp spike. We take this 
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(4 (b) 
FIG. IO. A study of the behavior of the m = 3 rotating V-states near R,C using the fixed-point 

boundary condition. (a) a, is the tangent angle of the contour at 0= -n/Z. The algorithms and 
discretizations are: (A, dotted line) second order and I0 (constant); (B, dotted-dashed line) second order 
and 0.1” (“linearly” increasing); (C, dashed line) second order and 0.01” (“linearly” increasing); (D, 
solid line) third order and 0.01” (“linearly” increasing). (b) The behavior of selected contours near RT 
for the third-order algorithm and O.OOl” (“linearly” increasing). 

as evidence that we have passed the range of existence of steady-state solutions to the 
continuum equations, which do not have V-states with cusps. 

Finally, in Fig. 11 we compare the numerical results (the dots) for the 0.01” run 
with the 4-point boundary condition in Table IIIb to the formulas in Section 3, 
Eq. (3.30). C, has been calculated numerically from (3.29a) and then C, from (3.31). 
For 6 = 0.00044 then C, + C, = -0.692 while even for 6 = 0.085, C, + C, = -0.694. 
The comparison is excellent for the entire sector, -72/2 < B < -n/6. Also, Q is 
0.30122 from (3.20) while it is 0.30121 in Table IIIb. In Fig. 12 we compare an 

-2 1 

FIG. 11. A comparison of the limiting m = 3 rotating V-state for -n/2 < 6’< -n/6 using the third- 
order algorithm with 0.001’ (the dots) and the analytical formula, Eq. (3.30). 
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Y 

-1.735 

FIG. 12. A comparison of an analytical m = 3 rotating V-state, R, = 1.73493 (the middle curve in 
Fig. lob), with the analytical formula, Eq. (3.25). 

analytical V-state, Eq. (3.25), with the solution of the third-order algorithm, N = 60 
and 0.001 for R, = 1.7349. In this case the equation requires Q as well as the nodes 
on the contour from the numerical calculation. Using the value of B = 0.301170 we 
find that C, = 0.00052, C, = -4.4489 and the curvature at R, obtained by differen- 
tiating (3.25) is K = 1495, which agrees with the numerical solution to three 
significant digits. We consider all of the above a sufficient validation of our 
calculations of the limiting V-states. 

The only difficulty we have encountered for 3 < m < 6 is that the curvature 
oscillates near 6’= -n/2 as the limiting V-state is approached. In fact, the 
calculations of the V-states in Fig. 7 were done with the nodes equally spaced in 
angle (see Table IIIb) and for m = 4, 5 and 6 it is just possible to see wiggles in the 
curvature plots near the singularity (i.e., s = 0). (For m = 3 it is possible to remove 
the oscillations by a judicious choice of discretization while for 4 < m < 6 the size 
and location of the oscillations change with the discretization but do not disappear.) 
However, for 3 < m < 6, the curvature does have the correct sign ut 9 = -7c/2. That 
is, from (3.30) the curvature at R, should be +co for m = 3 and 4 since 
(3/8) - 52 > 0, while it should be -co for m > 5 since (3/8) - Q < 0. With sufficient 
nodes we believe these oscillations would disappear. 

7. DISCUSSION AND CONCLUSIONS 

We have presented new accurate (and fast) algorithms and refined procedures for 
computing symmetric translating and rotating V-states of the Euler equations in two 
dimensions. These include limiting nonanalytical contours with corner singularities 
that are compared with analytical solutions [ 151. The agreement is excellent! These 
singularities were missed in previous numerical work 18, lo]. 

Burbea and Landau [ 10) proposed calling the rotating V-states “nonlinear Kelvin 
waves.” However, “V-states” (vortex states) seems more appropriate since there are 
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already at least two types of Kelvin waves and since Deem and Zabusky first showed 
their existence [4] and coined the expression. 

In all but the limiting cases the second-order accurate algorithm converges to the 
V-state quickly, both in the number of iterations (~100) and the CPU time. The CPU 
time per iteration is O(N*) compared to Newton-Raphson, which is O(N3). The 
algorithms of Pierrehumbert [S] and Burbea and Landau [lo] are also O(N’). 

Our development of the third-order algorithm may seem ad hoc but came about in 
a search for an accurate method to calculate limiting V-states. We have used relined 
procedures to validate our results including various discretizations in the 
neighborhood of the singularity and two boundary conditions. In this paper we have 
not attempted to find procedures to minimize computation time. However, since most 
of the time in an iteration is taken up calculating the velocities, in recent work we 
have recalculated them every 20 iterations when F < lo-“. We find it reduces the 
computation time by a factor of 3. 

We are presently using the new algorithms and have obtained asymmetric tran- 
slating V-states and V-states with nested contours. The latter involves the solution of 
coupled integro-differential equations, one for each contour. However, there is a 
constraint that the velocities V or R for all contours must be equal. 

APPENDIX A: DERIVATION OF A THIRD-ORDER ALGORITHM 

Since the velocities (uk, u,J are calculated by the trapezoidal rule (4. I), they are 
accurate to second order. Here, we show that we can obtain a third-order algorithm 
by properly weighting two equations. 

Let 1 and R  ̂be the solutions of A’(B) = xR ,̂ (2.10) (where primes denote differen- 
tiation with respect to e), and R, = R(B,) be the solution of our self-consistent 
discrete representation (4.11). Let 

2 kill*- ktI/2+ek+I,2r -1 (A.11 

where ek+ ,,* = O((dr3,)‘). Then after some algebra (4.13) yields 

G - Gk+ 1/2 ’ c1 - ek+ l/2 dok) + o((Aok)4)v k+1/2 - (A.21 

where Gk+ 1,2 = G(lk+ 1,2). If we expand R, in (4.12) about R, we obtain 

‘k - Gk+ l,ZRk+ 1 = Ek+ 1,2(A8k>3 + o((A8k)4h 

where 

E(B) = (R “‘/24) - (AR “/8). 

(A.3) 

(A.4 ) 

If we substitute (A.2) into (4.12a) and subtract (A.3) we obtain 

(Rk-gk)- Gktl,2@k+l-Rktl) + ektI/2A6k~k+1/2RktI f Ek+1/2(A&)3 

= O((A8k)4). (A.5) 
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We apply the same technique to (4.12b) and find 

(Rk-~k)-~k-li2(Rk-,-~k--l)-ek-1,2A~k-l~k=L1,2Rk--l-Ek~II2(A~k-1)3 

= O((AB,- J”). (A-6) 

To remove the leading order error, O((Ao)I), in (AS) and (A.6), we multiply (A.5) 
by 1 -& and (A.6) by pk to obtain 

-~,~~~,,Z(R,-,-R^,~,)+(R,-R^,)-(~-~,)~,+,;Z(R,+,--~+,) 

+ lPk(-ek-1,2Aek~IG~~1,2Rk-L +Ek-li2(Aek-1)3) 

+ (1 -Pk)(ek-,,zAekGk+,,zRk+1 +Ek+&%J3)1 =0(W)“). (A.7) 

Thus, we must choose Pk so that the term in brackets is O((AQ4), namely, 

-Pk(Aek- 1)’ + (1 - P/&w3 = 0. 64.8 1 

This follows because, to lowest order, C?;Y1,2=Gk+,,2= 1, Rk-,=Rk+,, E,-,,,,= 
E kt l/23 ek-,/, = C(Aek-,)’ and ek+]/2 = c(A0,)’ (for some c), where the latter three 
expressions are valid if the contour is analytic in the region from k - 1 to k + 1. 

APPENDIX B: INITIAL DATA AND DISTRIBUTION OF THE NODES 

FOR LIMITING CASES 

B. 1. Translating Case 

In order to obtain the initial approximation R”‘(0) we begin with the nodes, 
((x,, yk) 1 1 < k <N + l}, from the 17th state, i.e., x,~ = lo-‘. We find the value of k 
at which yk is a maximum, say, k = K. Then we modify all (x,, yk) for k < K + 2 by 

x; =xK+3[(k - l)/(K + 2)\2.5, lGkGK-62, 

to obtain a nearly geometric ratio and 

.Y; = %4, l<k<K+2, 

where P(x) is the unique quadratic function satisfying y,, 3 = P(x,, 3), yk + s = 
P(x,+,) and dP/dxj,=, = 0. 

B.2. Rotating Case 

The interval -n/2 < 0 < e,,, - n/2, where 4, = n/m, is divided into N + 1 angles by 

ek = +/2 + &[(I + ~)(k-l)lh - i I/L, l,<k<N+l. 

For m = 3 and N = 60 if Af3, = 0.01” then L = 691, Ad,,. = 6.2” and the ratio of the 
largest A8 to the smallest is ~620. If AB, = O.OOl”, then L = 9950, de,&, = 8.5” and the 
ratio is ~8500. 
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